八年级上册数学知识要点1 圆的性质 (1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。 圆也是中心对称图形,其对称中心是圆心。 垂径定理:垂直于弦的直径*分这条弦,并且*分弦所对的2条下面是小编为大家整理的2023年度八年级上册数学知识要点3篇(范例推荐),供大家参考。
八年级上册数学知识要点1
圆的性质
(1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径*分这条弦,并且*分弦所对的2条弧。
逆定理:*分弦(不是直径)的直径垂直于弦,并且*分弦所对的2条弧。
(2)有关圆周角和圆心角的性质和定理
① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
(3)有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直*分线的交点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角*分线的交点,到三角形三边距离相等。
③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。
④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)
⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直*分公共弦。
(5)弦切角的度数等于它所夹的弧的度数的一半。
(6)圆内角的度数等于这个角所对的弧的度数之和的一半。
(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。
(8)周长相等,圆面积比长方形、正方形、三角形的面积大。
点、线、圆与圆的位置关系:
点和圆位置关系
①P在圆O外,则 PO>r。
②P在圆O上,则 PO=r。
③P在圆O内,则 0≤PO
反过来也是如此。
八年级上册数学知识要点2
极差
它是标志值变动的最大范围。极差也称为全距或范围误差,它是测定标志变动的最简单的指标。换句话说,也就是指一组数据中的最大数据与最小数据的差叫做这组数据的极差。 极差英文为range ,简写为R,表示为:R=Xmax-Xmin。移动极差(Moving Range)是其中的一种。
计算公式
全距=最大标志值—最小标志值
R=Xmax-Xmin
(其中,Xmax为最大值,Xmin为最小值)
例如 :12 12 13 14 16 21
这组数的极差就是 :21-12=9
例如,“早穿皮袄午穿纱”,这句话说明的气温特征数就是极差。
方差计算公式:s^2=(1/n)*[(x1-x0)^2 + (x2-x0)^2 +...+ (xn-x0)^2]
(X0即为x的*均值)
极差、方差、*均数等知识都是数据统计的知识。
极差与方差的区别与联系
一、极差与方差的区别与联系
1.极差反映的仅仅是数据的变化范围;方差反映的是数据在它的*均数附近波动的情况。
2.极差的计算最简单,只需要计算数据的最大值与最小值的差即可,而方差的计算就要复杂得多,方差是一组数据中各个数据二这组数据*均数的差的*方的*均数。
二、极差与方差的联系
极差、方差都是用来描述一组数据波动情况的.,常用来比较两组数据的波动大小,极差、方差越小,波动越小,进而知这组数据比较稳定,极差、方差越大,波动越大,进而知这组数据不稳定。
三、极差的概念
一组数据中的最大数据与最小数据的差叫做极差,即极差=最大值-最小值。极差反映了一组数据的变化范围。
四、方差的概念
方差是各个数据与*均数之差的*方和的*均数。
八年级上册数学知识要点3篇扩展阅读
八年级上册数学知识要点3篇(扩展1)
——八年级上册数学知识重点归纳3篇
八年级上册数学知识重点归纳1
圆的认识
圆的定义:
圆是一种几何图形。当一条线段绕着它的一个端点在*面内旋转一周时,它的另一个端点的轨迹叫做圆。
在一个个*面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
相关定义:
1 在同一*面内,到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的圆心。图形一周的长度,就是圆的周长。
2 连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。
3 通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。直径所在的直线是圆的对称轴。
4 连接圆上任意两点的线段叫做弦。最长的弦是直径,直径是过圆心的弦。
5 圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,优弧是用三个字母表示。小于半圆的弧称为劣弧,劣弧用两个字母表示。半圆既不是优弧,也不是劣弧。优弧是大于180度的弧,劣弧是小于180度的弧。
6 由两条半径和一段弧围成的图形叫做扇形。
7 由弦和它所对的一段弧围成的图形叫做弓形。
8 顶点在圆心上的角叫做圆心角。
9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
10 圆周长度与圆的直径长度的比值叫做圆周率。它是一个无限不循环小数,通常用π表示,π=3.14159265……在实际应用中,一般取π≈3.14。
11圆周角等于相同弧所对的圆心角的一半。
12 圆是一个正n边形(n为无限大的正整数),边长无限接近0但不等于0。
圆的集合定义:
圆是*面内到定点的距离等于定长的点的集合,其中定点是圆心,定长是半径。
圆的字母表示:
以点O为圆心的圆记作“⊙O”,读作O”。
圆—⊙ ;
半径—r或R(在环形圆中外环半径表示的字母);
弧—⌒ ;
直径—d ;
扇形弧长—L ;
周长—C ;
面积—S。
八年级上册数学知识重点归纳2
整式的乘法
(一)单项式与单项式相乘
1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
2、系数相乘时,注意符号。
3、相同字母的幂相乘时,底数不变,指数相加。
5、单项式乘以单项式的结果仍是单项式。
6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
(二)单项式与多项式相乘
1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。
2、运算时注意积的符号,多项式的每一项都包括它前面的符号。
3、积是一个多项式,其项数与多项式的项数相同。
4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。
(三)多项式与多项式相乘
1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的`每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。
2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。
4、运算结果中有同类项的要合并同类项。
5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。
八年级上册数学知识要点3篇(扩展2)
——八年级上册数学知识归纳3篇
八年级上册数学知识归纳1
三角形的稳定性
1. 三角形具有稳定性
2. 四边形及多边形不具有稳定性
要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。 11.2 与三角形有关的角
第1课时三角形的内角
1. 三角形的内角和定理
三角形的内角和为180°,与三角形的形状无关。
2. 直角三角形两个锐角的关系
直角三角形的两个锐角互余(相加为90°)。 有两个角互余的三角形是直角三角形。 第2课时三角形的外角
1. 三角形外角的意义
三角形的一边与另一边的延长线组成的角叫做三角形的外角
2. 三角形外角的性质
三角形的一个外角等于与它不相邻的两个内角之和。 三角形的一个外角大于与它不相邻的任何一个内角。
八年级上册数学知识归纳2
多边形
1. 多边形的概念
在*面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角。多边形的边与它邻边的延长线组成的角叫做外角。
连接多边形不相邻的两个顶点的线段叫做多边形的对角线。
一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为
2. 凸多边形
画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是凸多边形。
3. 正多边形
各角相等,各边相等的多边形叫做正多边形。(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)
多边形的内角和
1. n边形的内角和定理
n边形的内角和为(n2)180°
2. n边形的外角和定理
多边形的外角和等于360°,与多边形的形状和边数无关。
八年级上册数学知识归纳3
基础知识梳理
(一)、基本概念
1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质
(1)全等三角形对应边相等;(2)全等三角形对应角相等;
3、全等三角形的判定方法
(1)三边对应相等的两个三角形全等。SSS
(2)两角和它们的夹边对应相等的两个三角形全等。ASA
(3)两角和其中一角的对边对应相等的两个三角形全等。AAS
(4)两边和它们的夹角对应相等的两个三角形全等。SAS
(5)斜边和一条直角边对应相等的两个直角三角形全等。HL
4、角*分线的性质及判定
性质:角*分线上的点到这个角的两边的距离相等
判定:角的内部到角的两边的距离相等的点在角的*分线上
(二)灵活运用定理
1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:
①夹边相等(ASA)②任一组等角的.对边相等(AAS)
(2)已知条件中有两边对应相等,可找
①夹角相等(SAS)②第三组边也相等(SSS)
(3)已知条件中有一边一角对应相等,可找
①任一组角相等(AAS 或 ASA)②夹等角的另一组边相等(SAS)
证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:
1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角*分线、中线、高、等腰三角形、等所隐含的边角关系);
2.回顾三角形判定公理,搞清还需要什么;
3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。
八年级上册数学知识要点3篇(扩展3)
——八年级下册数学知识要点总结3篇
八年级下册数学知识要点总结1
边形性质探索
定义:若两条直线互相*行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为*行线之间的距离。
*行四边形: 两组对边分别*行的四边形.。 对边相等,对角相等,对角线互相*分。 两组对边分别*行的四边形是*行四边形,两组对边分别相等的四边形是*行四边形,两条对角线互相*分的四边形是*行四边形,一组对边*行且相等的四边形是*行四边形
菱形 :一组邻边相等的*行四边形 „„(*行四边形的性质)。四条边都相等,两条对角线互相垂直*分,每一条对角线*分一组对角。 一组邻边相等的*行四边形是菱形,对角线互相垂直的*行四边形是菱形,四条边都相等的四边形是菱形。
矩形: 有一个内角是直角的*行四边形 „„(*行四边形的性质)。对角线相等,四个角都是直角。 有一个内角是直角的*行四边形是矩形,对角线相等的*行四边形是矩形。
正方形: 一组邻边相等的矩形。 正方形具有*行四边形、菱形、矩形的一切性质。 一组邻边相等的矩形是正方形,一个内角是直角的菱形是正方形。
梯形: 一组对边*行而另一组对边不*行的四边形。 一组对边*行而另一组对边不*行的四边形是梯形 。 等腰梯形 :两条腰相等的梯形。 同一底上的两个内角相等,对角线相等。 两腰相等的梯形是等腰梯形,
同一底上两个内角相等的梯形是等腰梯形 。
直角梯形 :一条腰和底垂直的梯形。 一条腰和底垂直的梯形是直角梯形。
多边形:在*面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形。n边形的内角和等于(n-2)×180
多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。 多边形的外角和都等于360°。三角形、四边形和六边形都可以密铺。
定义:在*面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
中心对称图形上的每一对对应点所连成的线段都被对称中心*分。
八年级下册数学知识要点总结2
一、一次函数
定义:一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中是x自变量,y是因变量。
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组成的图形叫做该函数的图象。 正比例函数y=kx的图象是经过原点(0,0)的一条直线。 在一次函数y=kx+b中,
当k>0时,的值随值的增大而增大; 当k<0时,的值随值的增大而减小。
二、二元一次方程组
定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的.解。 解二元一次方程组的基本思路是“消元”——把“二元”变为“一元”。 以一个未知数代另一个未知数的解法称为代入消元法,简称代入法。 通过两式加减消去其中一个未知数的解法称做加减消元法,
八年级上册数学知识要点3篇(扩展4)
——八年级上册数学教学总结5篇
八年级上册数学教学总结1
学实践中我觉得教师的真正本领,主要不在于讲授知识,而在于激发学生的学习动机,唤起学生的求知欲望,让他们参与到教学全过程中来,经过自己的思维活动和动手操作获得知识。要提高教学效果,达到教学目的,必须在引导学生参与教学活动的全过程上做好文章:加强学生的参与意识;增加学生的参与机会;提高学生的参与质量;培养学生的参与能力。此外,在数学教学中应渗透法制教育的思想,增强学生的法律意识和自我保护的能力。
一、改变学生的学习状态,在教学中更重要的是关注学生的学习过程以及情感、态度、价值观、能力等方面的发展。
就学习数学而言,学生一旦"学会",享受到教学活动的成功喜悦,便会强化学习动机,从而更喜欢数学。因此,教学设计要促使学生的情感和兴趣始终处于最佳状态,从而保证施教活动的有效性和预见性。
二、重视学习动机在教学过程中的激励作用,通过激发学生的参与热情,逐步强化学生的参与意识。
学生学知识是为了用知识。但长期的应试教育使大多数学生不知道为什么学数学,学数学有什么用。因此在教学时,应针对学生的年龄特点、心理特征,密切联系学生的.生活实际,精心创设情境,让学生在实际生活中运用数学知识,切实提高学生解决实际问题的能力。使大家都能深深感受到"人人学有用的数学"的新理念。经常这样训练,使学生深刻地认识到数学对于我们的生活有多么重要,学数学的价值有多大,从而激发了他们学好数学的强烈欲望,变"学数学"为"用数学"。
三、重视实践活动在教学过程中的启智功能,通过观察、思考、讨论等形式诱导学生参与知识形成发展的全过程,尽可能增加学生的参与机会。
在数学教学中,让学生积累丰富的典型的感性材料,建立清晰的表象,才能更好地进行比较、分析、概括等一系列思维活动,进而真正参与到知识形成和发展的全过程中来。
四、重视学习环境在教学过程中的作用。通过创设良好的人际关系和学习氛围激励学生学习潜能的释放,努力提高学生的参与质量。
和谐的师生关系便于发挥学生学习的主动性、积极性。教师应鼓励学生大胆地提出自己的见解,即使有时学生说得不准确、不完整,也要让他们把话说完,保护学生的积极性。
交流沟通、求知进取、和谐愉快的学习氛围为学生提供了充分发展个性的机会,教师只有善于协调好师生的双边活动,才能让大多数学生都有发表见解的机会。例如,在讨论课上教师精心设计好讨论题,进行有理有据的指导,学生之间进行讨论研究。这样学生在生动活泼、民主和谐的群体学习环境中既独立思考又相互启发,在共同完成认知的过程中加强思维表达、分析问题和解决问题能力的发展,逐步提高学生参与学习活动的质量。
五、重视学习方法在教学过程中的推动作用
通过方法指导,积极组织学生的思维活动,不断提高学生的参与能力。教育心理学的研究成果表明,教师可以通过有目的的教学促使学生有意识地掌握推理方法、思维方式、学习技能和学习策略,从而提高学生参与活动的心理过程的效率来促进学习。在教学中,教师不但要教知识,还要教学生如何“学”。教学中教师不能忽视,更不能代替学生的思维,而是要尽可能地使教学内容的设计贴近学生的“最近发展区”。通过设计适当的教学程序,引导学生从中悟出一定的方法。
六、培养学生反思是作业之后的一个重要环节
实践表明,培养学生把解题后的反思应用到整个数学学习过程中,养成检验、反思的习惯,是提高学习效果、培养能力的行之有效的方法。解题是学生学好数学的必由之路,但不同的解题指导思想就会有不同的解题效果,养成对解题后进行反思的习惯,即可作为学生解题的一种指导思想。反思对学生思维品质的各方面的培养都有作积极的意义。因此,在不增加学生负担的前提下,要求作业之后尽量写反思,利用作业空出的反思栏给老师提出问题,结合作业作出合适的反思。对学生来说是培养能力的一项有效的思维活动,培养学生反思解题过程是作业之后的一个重要环节,具有很大的现实意义。
七、多准备资料,认真备课,增强法制教育在数学教学中的应用,提高学生的法律意识。如在一次函数的教学时,通过函数的表达式及图像等知识,可渗透《环境保护法》、各年的未成年人犯罪情况的相关的知识。
八年级上册数学教学总结2
教学工作是学校各项工作的中心,也是校验一个教师工作成败的关键。近几年来,在坚持抓好新课程理念学习和应用的同时,我积极探索教育教学规律,充分运用学校现有的教育教学资源,大胆改革课堂教学,加大新型教学方法使用力度,取得了一定的成绩,现在谈谈我在教学活动中的几点体会:
一、要注重教会学生学习
1、利用好数学阅读课,培养学生的学习能力
很多学生认为,数学课只要带着耳朵来听足矣。其实不然,数学学习离不开书本,进行数学阅读,可以提高学生的自学能力。数学阅读课就是课堂内,学生在老师的指导下,各自独立地进行学习。当然,教师首先告诉学生阅读的范围,指导学生阅读的思想和方法,解答学生提出的疑难等;学生通过阅读、思考、分析、训练,弄清知识原理,学会例题,也可以对例题进行改造。既完成练习,又复习旧知识;课堂后段教师用适量的时间进行点评、检查学生对知识的掌握情况。因此,数学阅读课能有效地培养学生的读书能力、学习能力,为他们主动地去学习、以及获取课外知识提供可能。
2.注重知识生成过程的教学,提高学生的学习能力
数学中概念的建立、结论、公式、定理的总结过程,蕴藏着深刻的数学思维过程。传统教学相对比较注重结果教学。教学中如果只注意结果,学生在应用知识时总显得比较吃力。进行这些知识生成过程的教学,就显得至关重要,它不仅有利于培养学生的学习兴趣,对提高学生的学习能力也有着十分重要的作用。数学的新教材也注重了知识的引入和生成过程的编写,这也正是为了培养新型人才的需要。因此我们应当改变那种害怕浪费课堂时间,片面追求提高学生方法运用能力的做法,应当结合教学内容,设计出利于学生参与认知的教学环节,把概念的形成过程、方法的探索过程,结论的推导过程、公式定理的归纳过程等充分暴露在学生面前,让学生的学习过程成为自己探索和发现的过程,真正成为认知的主体,增强求知欲,从而提高学习能力。例如,在学习等腰三角形的性质定理时,教师不直接告诉学生等边对等角,而是可以先让学生将一个等腰三角形的两个底角对折,让学生发现它们相等这个特性,从而进一步提出结论的数学理论推导过程。并且学生可通过折痕得到添加辅助线的方法----作底边上的高或顶角*分线或底边上的中线去构造两个全等的三角形,通过全等三角形的性质导出结论;同时,通过学生亲手操作,学生还会发现等腰三角形轴对称等特性。这样,激发学生学数学的兴趣。这种探索精神也势必激励学生*,从而提高学习能力。
二、营造良好的教学情境,提高学生创造思维能力
情境教学以优化的情境为空间,以创设情境为主线,根据教材的
1、数学是思维的体操。
数学教学是思维活动的教学,是思维过程的教学,没有学生的思维活动的数学课是不成功的,数学课堂上,学生的思维很大程度上依赖于课堂的情境,以及教师的循循善诱和精心的点拨。因此,课堂情境的创设要以激发学生思维活动为出发点。心理学研究表明:不好的思维情境会抑制学生的思维热情,所以,课堂上提问的设计、题目的选择、情境的创设等课件都要充分考虑对学生思维活动的启发性,这正是课堂情境创设所要达到的目的。
2、数学教学中应激发学生的求知欲,问题是数学的灵魂。课堂上,教师创设问题情境,以激励学生解决问题的动机,通过探索,解决问题,获得积极的心理满足,只有感受真切,才能入境。要做到这一点,可以用创设问题情境来激发学生求知欲。
创设问题情境就是在讲授内容和学生求知心理间制造一种“不和谐”,将学生引入一种与问题相关的情境之中。问题情境的创设要小而具体、新颖而有趣、具有启发性,同时又有适当的难度,与课本内容保持相对一致,不要运用不恰当的比喻,这样不利于学生正确理解概念和准确使用数学语言能力的形成。教师要善于将所要解决的课题寓于学生实际掌握的知识基础之中,造成心理上的悬念,把问题作为教学过程的出发点,以问题情境激发学生的积极性,让学生在迫切要求下学习。
例如,在进行教学设计时,教师可以通过具体问题的解决创设出如下诱人的问题情境:而这正是要学的课题。于是教师便抓住引出课题,再引导学生分析画法的实质,并用几何语言概括出这个实质,即这样,就由学生自己从问题出发获得了判定定理。接着,再引导学生根据上述实际问题的启示思方法。除创设问题情境外,还可以创设新颖、惊愕、幽默、议论等各种教学情境,良好的情境可以使教学内容触及学生的情绪和意志领域,让学生深切感受学习活动的全过程并升化到自己精神的需要,成为提高课堂教学效率的重要手段。这正象赞可夫所说的:“教学法一旦触及学生的情绪和意志领域,这种教学法就能发挥高度有效的作用”。
3、教师要传授知识,更要育人。
如何在数学教育中,对学生进行思想道德教育,在情境教学中也得到了较好的体现,法国著名数学家包罗朗之万曾说:“在数学教学中,加入历史具有百利而无一弊的。”我国是数学的故乡之一,中华
有效的教学离不开好的教学情境,创造和谐的教学情境,才有利于提高学生的创新思维能力,才有利于学生的发展。
三、要以新课标为指导进行数学课堂教学
传统的课程只有教师与教材,新课标的数学课程是教师、学生教、学材料教学情境与教学环境构成的,就是说,课程是变化的,是教师和学生一起探究新知识的过程。教师和学生是课程的一部分,也是课程的建设者,教学过程教师与学生共同创新课程和开发课程的过程。教师在课堂教学应该以新课标为标准。
1、教师在课堂教学中让学生体验数学,体验数学具有自然科学
2、在数学教学中,把数学教学过程看成是学生做数学,探究数学知识,发现数学知识的过程,自主建构知识体系的过程。传统教育把学生看成是一个容器,学生的任务是接受知识。但新课标要求,教学并不是老师塞给学生多少知识,学生脑子可装进知识,学生可以有选择的。学生的学习过程是自己自主地建构自己的知识体系的过程,强调学生的自主性及主体性和独立性。因此,在课堂教学中,教师要恰当引导学生进行自主学习,培养创新思维及实践能力。
3、在教学中,应把教学过程看成是教师与学生互动,情感交流的过程。教师的教任务实际是帮助学生建构知识系统和发展自己的潜能,教师的教和学生的学是统一的,是交往互动。在课堂教学中,学生不能只作听众,应自觉地动起来,操作数学,通过思考探究,发现数学知识。在教学中可通过师生及生生之间进行合作交往,促进学生的个性发展,提高他们的交往能力。同时,在发展个性中,要关注学生,培养学生的自信心,提高他们的创新能力。
4、在教学中,教师应注意处理师生间的关系,他们应该是*等的,民主的。教师只是*等中的首席,教师成为学生发展的促进者,
学生是独特的、独立的和发展的人,是发展的主体。在课堂教学中,教师应充分调动学生的积极和主动性。
总之,在数学课堂教学中,要提高学生在课堂45分钟的学习效率,要提高教学质量,我们就应该多思考,多准备,充分做到备教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用。
八年级上册数学教学总结3
教学工作是学校各项工作的中心,也是校验一个教师工作成败的关键。近几年来,在坚持抓好新课程理念学习和应用的同时,我积极探索教育教学规律,充分运用学校现有的教育教学资源,大胆改革课堂教学,加大新型教学方法使用力度,取得了一定的成绩,现在谈谈我在教学活动中的几点体会:
一、要注重教会学生学习
1、利用好数学阅读课,培养学生的学习能力
很多学生认为,数学课只要带着耳朵来听足矣。其实不然,数学学习离不开书本,进行数学阅读,可以提高学生的自学能力。数学阅读课就是课堂内,学生在老师的指导下,各自独立地进行学习。当然,教师首先告诉学生阅读的范围,指导学生阅读的思想和方法,解答学生提出的疑难等;学生通过阅读、思考、分析、训练,弄清知识原理,学会例题,也可以对例题进行改造。既完成练习,又复习旧知识;课堂后段教师用适量的时间进行点评、检查学生对知识的掌握情况。因此,数学阅读课能有效地培养学生的读书能力、学习能力,为他们主动地去学习、以及获取课外知识提供可能。
2.注重知识生成过程的教学,提高学生的学习能力
数学中概念的建立、结论、公式、定理的总结过程,蕴藏着深刻的数学思维过程。传统教学相对比较注重结果教学。教学中如果只注意结果,学生在应用知识时总显得比较吃力。进行这些知识生成过程的教学,就显得至关重要,它不仅有利于培养学生的学习兴趣,对提高学生的学习能力也有着十分重要的作用。数学的新教材也注重了知识的引入和生成过程的编写,这也正是为了培养新型人才的需要。因此我们应当改变那种害怕浪费课堂时间,片面追求提高学生方法运用能力的做法,应当结合教学内容,设计出利于学生参与认知的教学环节,把概念的形成过程、方法的探索过程,结论的推导过程、公式定理的归纳过程等充分暴露在学生面前,让学生的学习过程成为自己探索和发现的过程,真正成为认知的主体,增强求知欲,从而提高学习能力。例如,在学习等腰三角形的性质定理时,教师不直接告诉学生等边对等角,而是可以先让学生将一个等腰三角形的两个底角对折,让学生发现它们相等这个特性,从而进一步提出结论的数学理论推导过程。并且学生可通过折痕得到添加辅助线的方法----作底边上的高或顶角*分线或底边上的中线去构造两个全等的三角形,通过全等三角形的性质导出结论;同时,通过学生亲手操作,学生还会发现等腰三角形轴对称等特性。这样,激发学生学数学的兴趣。这种探索精神也势必激励学生*,从而提高学习能力。
二、营造良好的教学情境,提高学生创造思维能力
情境教学以优化的情境为空间,以创设情境为主线,根据教材的
1、数学是思维的体操。
数学教学是思维活动的教学,是思维过程的教学,没有学生的思维活动的数学课是不成功的,数学课堂上,学生的思维很大程度上依赖于课堂的情境,以及教师的循循善诱和精心的点拨。因此,课堂情境的创设要以激发学生思维活动为出发点。心理学研究表明:不好的思维情境会抑制学生的思维热情,所以,课堂上提问的设计、题目的选择、情境的创设等课件都要充分考虑对学生思维活动的启发性,这正是课堂情境创设所要达到的目的。
2、数学教学中应激发学生的求知欲,问题是数学的灵魂。课堂上,教师创设问题情境,以激励学生解决问题的动机,通过探索,解决问题,获得积极的心理满足,只有感受真切,才能入境。要做到这一点,可以用创设问题情境来激发学生求知欲。
创设问题情境就是在讲授内容和学生求知心理间制造一种“不和谐”,将学生引入一种与问题相关的情境之中。问题情境的创设要小而具体、新颖而有趣、具有启发性,同时又有适当的难度,与课本内容保持相对一致,不要运用不恰当的比喻,这样不利于学生正确理解概念和准确使用数学语言能力的形成。教师要善于将所要解决的课题寓于学生实际掌握的知识基础之中,造成心理上的悬念,把问题作为教学过程的出发点,以问题情境激发学生的积极性,让学生在迫切要求下学习。
例如,在进行教学设计时,教师可以通过具体问题的解决创设出如下诱人的问题情境:而这正是要学的课题。于是教师便抓住引出课题,再引导学生分析画法的实质,并用几何语言概括出这个实质,即这样,就由学生自己从问题出发获得了判定定理。接着,再引导学生根据上述实际问题的启示思方法。除创设问题情境外,还可以创设新颖、惊愕、幽默、议论等各种教学情境,良好的情境可以使教学内容触及学生的情绪和意志领域,让学生深切感受学习活动的全过程并升化到自己精神的需要,成为提高课堂教学效率的重要手段。这正象赞可夫所说的:“教学法一旦触及学生的情绪和意志领域,这种教学法就能发挥高度有效的作用”。
3、教师要传授知识,更要育人。
如何在数学教育中,对学生进行思想道德教育,在情境教学中也得到了较好的体现,法国著名数学家包罗朗之万曾说:“在数学教学中,加入历史具有百利而无一弊的。”我国是数学的故乡之一,中华
有效的教学离不开好的教学情境,创造和谐的教学情境,才有利于提高学生的创新思维能力,才有利于学生的发展。
三、要以新课标为指导进行数学课堂教学
传统的课程只有教师与教材,新课标的数学课程是教师、学生教、学材料教学情境与教学环境构成的,就是说,课程是变化的,是教师和学生一起探究新知识的过程。教师和学生是课程的一部分,也是课程的建设者,教学过程教师与学生共同创新课程和开发课程的过程。教师在课堂教学应该以新课标为标准。
1、教师在课堂教学中让学生体验数学,体验数学具有自然科学
2、在数学教学中,把数学教学过程看成是学生做数学,探究数学知识,发现数学知识的过程,自主建构知识体系的过程。传统教育把学生看成是一个容器,学生的任务是接受知识。但新课标要求,教学并不是老师塞给学生多少知识,学生脑子可装进知识,学生可以有选择的。学生的学习过程是自己自主地建构自己的知识体系的过程,强调学生的自主性及主体性和独立性。因此,在课堂教学中,教师要恰当引导学生进行自主学习,培养创新思维及实践能力。
3、在教学中,应把教学过程看成是教师与学生互动,情感交流的过程。教师的教任务实际是帮助学生建构知识系统和发展自己的潜能,教师的教和学生的学是统一的,是交往互动。在课堂教学中,学生不能只作听众,应自觉地动起来,操作数学,通过思考探究,发现数学知识。在教学中可通过师生及生生之间进行合作交往,促进学生的个性发展,提高他们的交往能力。同时,在发展个性中,要关注学生,培养学生的自信心,提高他们的创新能力。
4、在教学中,教师应注意处理师生间的关系,他们应该是*等的,民主的。教师只是*等中的首席,教师成为学生发展的促进者,
学生是独特的、独立的和发展的人,是发展的主体。在课堂教学中,教师应充分调动学生的积极和主动性。
总之,在数学课堂教学中,要提高学生在课堂45分钟的学习效率,要提高教学质量,我们就应该多思考,多准备,充分做到备教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用。
八年级上册数学教学总结4
20xx年秋季学期八年级数学上册教学工作总结
本学期我担任八年级(2)(3)班数学教学工作。由于刚接手新课标教学,无论是教学内容还是教学观念方法方式方面都有新的挑战,教学起来感到不适应、很吃力。我不敢放松自己,每天都花三个小时以上时间去备课,钻研新课标,以尽快适应新形势的数学教学。通过一个学期的努力,取得不少经验,在期末质检中,两班102人的*均分是61.3分,优秀人数有14人,优秀率是4.12%,合格人数有24人,合格率是24.74%,从试卷难度和全县各中学八年级数学成绩来看,还算是不错的。同时也得到不少教训,获得失败的伤痛,有时屡试屡败。总之,磕磕绊绊、摸着石头过河、边学边教、边做边适应地走进新课标。现将一学期来的成与败总结如下,以备今后继承发扬和摒弃吸取教训。
一、 主要工作及取得的成绩:
1、做好课前准备和课后反思工作
面对新的学生新的教材新的教学要求,激起我的挑战欲望,决心立志要在新的老师角色中争取教学教研方面有所成就。于是我每天花3小时以上时间认真阅读、挖掘、活用教材,研究教材的重点、难点、关键,研读新课标,明白这节课的新要求,思考如何将新理念融入课堂教学中。认真书写教案,利用网络资源,参考别人的教学教法教学设计,根据(5)(6)班同学的具体情况制定课时计划。每一课都做好充分的准备。为了使学生易懂易掌握,我还根据教材制作各种利于吸引学生注意力的有趣教具,制作课件,本学期我制作了20多个课件,争取每周都到多媒体室上课一次。课后及时对该课作出总结,写好教学后记,并进行阶段总结,即每章一总结,期中、期末一总结,学完代数、几何、统计知识又一总结。
2、把好上课关,提高课堂教学效率、质量。
新课标的数学课通常采用“问题情境——建立模型——解释、应用与拓展”的模式展开,所有新知识的学习都以相关问题情境的研究作为开始,它们使学生了解与学习这些知识的有效切入点。所以在课堂上我想方设法创设能吸引学生注意的情境。在这一学期,我根据教学内容的实际创设情境,让学生一上课就感兴趣,每节课都有新鲜感。
一位老师说过“新课标老师轻松多了”。我原来不同意他的看法,后来我终于明白了,课外要花多些时间精力,而课堂上老师一定要“轻松”,不能太忙。新课标倡导“自主、合作、探究”的学习方式。我在课堂上常为学生提供动手实践、自主探究、合作交流的机会,让他们讨论、思考、表达。由于学生乐学,兴致高昂,通常学生获得的知识都超过教材和我备课的范围。
3、虚心请教同组老师。在教学上,有疑必问。由于没有新课标教学经验,所以我的教学进度总是落在其他老师之后。我虚心向他们请教每节课的好做法和需要注意什么问题,结合他们的意见和自己的思考结果,总结出每课教学的经验和巧妙的方法。本学期我将自己在备课中想到的好点子以及遇到的问题整理成“教学反思录”。
4、 做好“培优、辅中、稳差”工作。根据(5)(6)班学生学习数学的基础和潜力,我把他们分成三类:优生30人,中层生共45人,待进生22人。利用每天下午放学后的半个小时的时间分别辅导他们,星期一辅导优生,星期二辅导中层生,星期三辅导待进生,星期四、五机动,有问题要问的学生自由来办公室问,或让作业不过关的同学有老师指点。除了老师辅导外,我还要求学生成立“数学学习互助小组”,即一名优生负责一至两名中层生和一名待进生,优生经常讨论学习问题,弄懂弄透了才去辅导其他同学。
5、制定数学课堂常规,促成良好学风。我所教的两个班,原来上课的时候不够认真,常有睡觉、开小差、讲粗言烂语的现象,课后作业完成情况也糟糕,甚至有放弃学习数学的学生。对此,我提议制定数学课堂常规,按常规进行奖罚。由于此常规是师生一起讨论得来的,所以它得到全体同学的认可。在数学课堂里迅速形成一种认真、求实的学风,出现了“四少”:抄袭作业的行为少了,讲粗言烂语的少了,上数学课开小差的少了,不学习数学的"少了。出现了“三多”:热爱学习数学的多了,好问者多了(好多学生常到办公室问老师问题和要求老师额外多布置一些题目),文明礼貌的行为多起来了。
二、存在问题和今后努力方向:
1、新课标学习与钻研还要加强;
2、课堂教学设计、研究、效果方面还要考虑;
3、多媒体技术在课堂教学中的使用还有待提高;
4、“培优、辅中、稳差”的方法方式还有待完善。
八年级上册数学教学总结5
转眼间初二下学期的工作就结束了。本学期我担任初二(7)(8)班的数学教学工作,在全体备课组老师的努力进取、团结协作下,我们的教学能力得到了一定的提高。
首先,我认真阅读新课标,钻研新教材,熟悉教材内容,查阅教学资料,适当增减教学内容,认真细致的备好每一节课,真正做到重点明确,难点分解。遇到难以解决的问题,就向老教师讨教或在备课组内讨论。另外,我还积极阅读教学教参书籍及教学论文,如《中学数学教学参考》等,认真学习各种教学方法,并尝试运用到实践教学中去。
其次,我积极参加各种教研活动,如集体备课,校内外听课,教学教研会议。努力提高课堂教学的操作调控能力,语言表达能力,运用多种教学器材,为了节省时间和增加课堂容量,我经常使用投影仪、多媒体。课下,根据自己的理解,选题、出检测试卷,这样也提高了我对教材重难点的理解。积极安排时间做好学生的辅导工作,学生有问题及时解决。坚持了一个学期,我感觉收获颇多。
备课组的精诚合作是取得成绩的关键。我们的备课组的新老师占了大多数,有的刚刚走上工作岗位,教学经验不足,这更需要发挥集体的力量。集体备课使我们对教材的认识达到统一,理解更深刻,时间安排一致。除了规定的时间集体备课外,我们还经常在一起讨论,解决问题。其次,统一测试、统一复习资料。*时,备课组安排老师出单元资料、检测题,然后统一使用。在期末复习阶段,组长安排每个老师负责出各章节的复习资料、复习题,资料共享。所以,最后的`成绩是我们备课组全体老师共同努力的结果。
以上是我工作的一个总结和体会,当然,有些可能是肤浅的,有些是大家*常都知道的。在我工作中,也有很多没能达到预期的效果,但我始终相信一分耕耘,总会有一分收获,所以我也将会继续努力,力争做的更好。
八年级上册数学知识要点3篇(扩展5)
——八年级下册数学知识点归纳总结3篇
八年级下册数学知识点归纳总结1
四边形
*行四边形定义:有两组对边分别*行的四边形叫做*行四边形。
*行四边形的性质:*行四边形的对边相等;
*行四边形的对角相等。
*行四边形的对角线互相*分。
*行四边形的判定
1.两组对边分别相等的四边形是*行四边形
2.对角线互相*分的四边形是*行四边形;
3.两组对角分别相等的四边形是*行四边形;
4.一组对边*行且相等的四边形是*行四边形。
三角形的中位线*行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
矩形的定义:有一个角是直角的*行四边形。
矩形的性质: 矩形的四个角都是直角;
矩形的对角线*分且相等。AC=BD
矩形判定定理:
1.有一个角是直角的*行四边形叫做矩形。
2.对角线相等的*行四边形是矩形。
3.有三个角是直角的四边形是矩形。
菱形的定义 :邻边相等的*行四边形。
菱形的性质:菱形的四条边都相等;
菱形的两条对角线互相垂直,并且每一条对角线*分一组对角。
菱形的判定定理:
1.一组邻边相等的*行四边形是菱形。
2.对角线互相垂直的*行四边形是菱形。
3.四条边相等的四边形是菱形。
S菱形=1/2×ab(a、b为两条对角线)
正方形定义:一个角是直角的菱形或邻边相等的矩形。
正方形的性质:四条边都相等,四个角都是直角。 正方形既是矩形,又是菱形。
正方形判定定理:
1.邻边相等的矩形是正方形。
2.有一个角是直角的菱形是正方形。
梯形的定义: 一组对边*行,另一组对边不*行的四边形叫做梯形。
直角梯形的定义:有一个角是直角的梯形
等腰梯形的定义:两腰相等的梯形。
等腰梯形的性质:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等。
等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。
八年级下册数学知识点归纳总结2
第十一章 全等三角形
一、知识框架
二、知识概念
1、全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过*移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
2、全等三角形的性质:全等三角形的对应角相等、对应边相等。
3、三角形全等的判定公理及推论有:
(1)“边角边”简称“SAS”
(2)“角边角”简称“ASA”
(3)“边边边”简称“SSS”
(4)“角角边”简称“AAS”
(5)斜边和直角边相等的两直角三角形(HL)。
4、角*分线推论:角的内部到角的两边的距离相等的点在叫的*分线上。
5、证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:
①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角*分线、中线、高、等腰三角形、等所隐含的边角关系)。
②、回顾三角形判定,搞清我们还需要什么。
③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。
在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。通过直观的理解和比较发现全等三角形的奥妙之处。在经历三角形的角*分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。
第十二章 轴对称
一、知识框架
二、知识概念
1、对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2、质:
(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直*分线。
(2)角*分线上的点到角两边距离相等。
(3)线段垂直*分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直*分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3、等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
4、等腰三角形的顶角*分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
5、等腰三角形的判定:等角对等边。
6、等边三角形角的特点:三个内角相等,等于60°,
7、等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60°的等腰三角形是等边三角形。
有两个角是60°的三角形是等边三角形。
8、直角三角形中,30°角所对的直角边等于斜边的一半。
9、直角三角形斜边上的中线等于斜边的一半。
本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。
第十三章 实数
一、知识框架
二、知识概念
1、算术*方根:一般地,如果一个正数x的*方等于a,即x2=a,那么正数x叫做a的算术*方根,记作。0的算术*方根为0;从定义可知,只有当a≥0时,a才有算术*方根。
2、*方根:一般地,如果一个数x的*方根等于a,即x2=a,那么数x就叫做a的*方根。
3、正数有两个*方根(一正一负)它们互为相反数;0只有一个*方根,就是它本身;负数没有*方根。
4、正数的立方根是正数;0的立方根是0;负数的立方根是负数。
5、数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0
实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。重点是实数的意义和实数的分类;实数的运算法则及运算律。
第十四章 一次函数
一、知识框架
二、知识概念
1、一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
2、正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。
3、正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
4、已知两点坐标求函数解析式:待定系数法
一次函数是初中学生学习函数的开始,也是今后学习其它函数知识的基石。在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。培养学生良好的变化与对应意识,体会数形结合的思想。在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。
第十五章整式的乘除与分解因式
一、知识概念
1、同底数幂的乘法法则:(m,n都是正数)
2、幂的乘方法则:(m,n都是正数)
3、整式的乘法
(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
(3)多项式与多项式相乘
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
4、*方差公式:
5、完全*方公式:
6、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n)。
在应用时需要注意以下几点:
①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0。
②任何不等于0的数的0次幂等于1,即,如,(-2。50=1),则00无意义。
③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;当a<0时,a-p的值可能是正也可能是负的,如,
④运算要注意运算顺序。
7、整式的除法
单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;
多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加。
8、分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
分解因式的一般方法:
1、提公共因式法
2、运用公式法
3、十字相乘法
分解因式的步骤:
(1)先看各项有没有公因式,若有,则先提取公因式;
(2)再看能否使用公式法;
(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;
(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;
(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止。
整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。在学习本章内容时,应多准备些小组合作与交流活动,培养学生推理能力、计算能力。在做题中体验数学法则、公式的简洁美、和谐美,提高做题效率。
八年级下册数学知识点归纳总结3
1、无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
开方开不尽的数,如√7 , 3 √2等;
有特定意义的数,如圆周率π,或化简后含有π的数,
如π/61+8等;
某些三角函数值,如sin60 0等
2、实数的倒数、相反数和绝对值
①相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
②绝对值
在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=—a,则a≤0。
③倒数
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和—1。零没有倒数。
④数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
⑤估算
3、*方根、算数*方根和立方根
①算术*方根
一般地,如果一个正数x的*方等于a,即x2=a,那么这个正数x就叫做a的算术*方根。特别地,0的算术*方根是0。
表示方法:记作“ ”,读作根号a。
性质:正数和零的算术*方根都只有一个,零的算术*方根是零。
②*方根
一般地,如果一个数x的*方等于a,即x2=a,那么这个数x就叫做a的*方根(或二次方根)。
表示方法:正数a的*方根记做“ ”,读作“正、负根号a”。
性质:一个正数有两个*方根,它们互为相反数;零的*方根是零;负数没有*方根。
开*方求一个数a的*方根的运算,叫做开*方。注意√a的双重非负性:√a≥0 ; a ≥0
③立方根
一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a的立方根(或三次方根)。
表示方法:记作3 √ a
性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:— 3 √ a= 3 √— a,这说明三次根号内的负号可以移到根号外面。
4、实数大小的比较
①实数比较大小
正数大于零,负数小于零,正数大于一切负数;
数轴上的两个点所表示的数,右边的总比左边的大;
两个负数,绝对值大的反而小。
②实数大小比较的几种常用方法
数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
求差比较:设a、b是实数a—b>062 a > b ; a—b=062 a =b a—b<062 a < b
求商比较法:设a、b是两正实数,
绝对值比较法:设a、b是两负实数,则∣a ∣ > ∣b ∣ 62 a < b 。
*方法:设a、b是两负实数,则a 2 > b 2 62 a < b 。
5、算术*方根有关计算(二次根式)
①含有二次根号“ √ ”;
②被开方数a必须是非负数。
③运算结果若含有“ √ ”形式,必须满足
被开方数的因数是整数,因式是整式
被开方数中不含能开得尽方的因数或因式
6、实数的运算
①六种运算:加、减、乘、除、乘方、开方
②实数的运算顺序
先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
③运算律
加法交换律a+b=b+a
加法结合律( a+b)+c =a+( b+c)
乘法交换律ab=ba
乘法结合律(ab)c =a( bc)
乘法对加法的分配律a( b+c) = ab +ac
初中数学垂直*分线定理
性质定理:在垂直*分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直*分线上
角*分线:把一个角*分的射线叫该角的角*分线。
数学学习思维方法
1、逻辑法
逻辑是一切思考的基础。逻辑思维,是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻辑思维,在解决逻辑推理问题时使用广泛。
2、逆向思维法
逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。
3、分类法
根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。
分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。
八年级上册数学知识要点3篇(扩展6)
——八年级上册生物知识要点总结3篇
八年级上册生物知识要点总结1
1. 目前已知的动物约150万种,按有无脊柱分为脊椎动物和无脊椎动物两大类.
2.水生动物最常见的是鱼,此外,还有①腔肠动物,如海葵、珊瑚②软体动物,如乌贼、章鱼③甲壳动物,如虾、蟹④海豚、龟等其他水生动物
3. 鱼适应水中生活最重要的两个特点:①能通过尾部的摆动和鳍的协调作用游泳来取食和避敌.②用鳃在水中呼吸
4.陆地环境特点与陆生动物的适应:①气候干燥------有防止体内水分散失的结构,如角质的鳞或甲,外骨骼.②缺少水的浮力------具支持躯体和运动的器官.有多种运动方式.③气态氧供呼吸------具能在空气中呼吸的、位于身体内部的呼吸器官,如肺和气管(蚯蚓例外,靠体表呼吸)④昼夜温差大,环境变化快而复杂------有发达的感官和神经系统,对多变环境及时作出反应
5.蚯蚓生活富含腐殖质的湿润土壤中,通过肌肉和刚毛的配合使身体蠕动,靠湿润的体壁呼吸.可根据环带着生在身体前端来判断首尾(环带也叫生殖带)
6. 身体由许多相似的环状体节构成的动物叫环节动物,如蚯蚓、沙蚕、水蛭
7. 哺乳动物:具胎生,哺乳,体表被毛,体温恒定等特征.如兔、大熊猫
8.恒温动物:可通过自身的调节而维持体温的恒定,使体温不随外界的变化而变化的动物.包括鸟类和哺乳动物.反之,体温随环境温度变化而改变的动物是变温动物,如蛇、昆虫等.恒温意义:减少对外界环境依赖性,扩大生活和分布范围
9.兔体表被毛,用肺呼吸,心脏四腔,体循环和肺循环两条途径,体温恒定,牙分门齿和臼齿,盲肠发达(在细菌作用下,有助于植物纤维质的消化),大脑发达,四肢灵活
10. 足够的.食物、水分、隐蔽地是陆生动物生存的基本环境条件
11. 空中飞行的动物有昆虫、蝙蝠、鸟类
12.鸟适于飞行的特点:①体呈流线型②体表被羽,前肢特化为翼③骨坚而轻,多气质骨,胸部有高耸的龙骨突④胸肌发达⑤食量大消化快⑥心脏四腔,心搏次数快,循环系统完善⑦有发达的气囊,既可减轻体重又与肺构成特有的双重呼吸.总之鸟类是体表被羽、前肢特化为翼、具有迅速飞翔能力、内有气囊、体温高而恒定的一类动物
13.昆虫是种类最多的一类动物,超过100万种,也是唯一会飞的无脊椎动物,因而分布最广泛.身体分为头、胸、腹三部分,体表被外骨骼,一般有3对足,2对翅
14. 蜘蛛、蜈蚣、虾、蟹等都不是昆虫,但它们都是节肢动物.其特点是:身体由很多体节构成,体表有外骨骼,足和触角分节
15. 两栖动物:幼体生活在水中,用鳃呼吸,经变态发育成为成体,营水陆两栖生活,用肺呼吸,同时用皮肤辅助呼吸
16. 哺乳动物的运动系统由骨骼和肌肉组成【或骨、骨连接(主要是关节)、骨骼肌】
17. 骨骼肌包括中间较粗的肌腹和两端较细的肌腱,一组肌肉的两端分别附着在不同骨上.骨骼肌受神经刺激后有收缩的特性
八年级上册生物知识要点总结2
陆地动物适应陆地环境的形态结构特征:
(1)陆地气候相对干燥;与此相适应,陆地生活的动物一般具有防止水分散失
的结构。比如爬行动物具有角质的鳞或甲,昆虫具有外骨骼。[鳞、甲、外骨骼(防止水分散失)]
(2)陆地动物不受水的浮力作用,一般都具有支持躯体和运动的器官。[有专门的运动器官]
(3)除蚯蚓等动物外,陆地生活的动物一般具有能在空气中呼吸的。位于身体
内部的各种呼吸器官,比如气管和肺。[有专门呼吸器官(蚯蚓除外)]
(4)陆地生活的动物还普遍具有发达的感觉器官和神经系统,能够对多变的环
境及时作出反应。[神经系统和感觉器官发达]
○蚯蚓:
生活环境:白天在洞穴居,晚间出来活动。
食性:枯枝落叶、垃圾
运动:身体分为许多体节(可运动灵活),环带上的肌肉(收缩),
可带动刚毛运动。
呼吸:靠体表皮肤(分泌黏液),黏液溶解氧气进入进入体壁的毛细血管到达蚯蚓全身
○兔子
体表被毛(保温),用肺呼吸,心脏4腔;血液循环路线分为肺循环和体循环两条路线,输送氧气的能力强,分解有机物快,产生的能量多,体温恒定,
食性:植物
消化:牙齿有门齿、臼齿
盲肠发达:可以贮藏大量的纤维性食物,植食性生活相适应。
神经:神经系统发达调节体温(大脑发达、神经布满全身)
生殖:胎生、哺乳(后代成活率高)
运动:跳跃(后退比前腿发达)
哺乳动物的主要特征:
体表被毛;牙齿有门齿、犬齿、臼齿的分化;体腔那有膈;用肺呼吸;心脏有完整分隔的四腔;体温恒定;大脑发达;多为胎生、哺乳。膈是哺乳动物特有的特征。
陆地中生活的动物所要的基本条件是:水份、充足的食物、隐藏地。
变温动物和恒温的区别:
哺乳类和鸟类可以通过自身的调节而维持体温的恒定,它们都是恒温动物。其他动物的体温随周围环境的变化而改变,属于变温动物。
八年级上册数学知识要点3篇(扩展7)
——八年级数学知识点整理3篇
八年级数学知识点整理1
1.分式:一般地,用A、B表示两个整式,AB就可以表示为 的形式,如果B中含有字母,式子 叫做分式.
2.有理式:整式与分式统称有理式;即 .
3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.
4.分式的基本性质与应用:
(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;
(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变; 即
(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.
5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.
6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.
7.分式的乘除法法则: .
8.分式的乘方: .
9.负整指数计算法则:
(1)公式: a0=1(a0), a-n= (a
(2)正整指数的运算法则都可用于负整指数计算;
(3)公式: , ;
(4)公式: (-1)-2=1, (-1)-3=-1.
10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.
11.最简公分母的确定:系数的最小公倍数?相同因式的最高次幂.
12.同分母与异分母的分式加减法法则: .
13.含有字母系数的一元一次方程:在方程ax+b=0(a0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.
14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.
15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.
16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.
17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.
18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加验增根的程序.
希望为大家提供的八年级上册数学知识点讲解,能够对大家有用,更多相关内容,请及时关注数学网!
八年级数学知识点整理2
一、实数的概念及分类
1、实数的分类
一是分类是:正数、负数、0;
另一种分类是:有理数、无理数
将两种分类进行组合:负有理数,负无理数,0,正有理数,正无理数
2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
(1)开方开不尽的数,如 等;
(2)有特定意义的"数,如圆周率π,或化简后含有π的数,如 +8等;
(3)有特定结构的数,如0.1010010001…等;
(4)某些三角函数值,如sin60o等
二、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值
在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
4、数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
八年级上册数学知识要点3篇(扩展8)
——北师版八年级上册数学知识点3篇
北师版八年级上册数学知识点1
三角形
1全等三角形的对应边、对应角相等
2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
5边边边公理(SSS)有三边对应相等的两个三角形全等
6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
7定理1在角的*分线上的点到这个角的两边的距离相等
8定理2到一个角的两边的距离相同的点,在这个角的*分线上
9角的*分线是到角的两边距离相等的所有点的集合
10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
21推论1等腰三角形顶角的*分线*分底边并且垂直于底边
22等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合
23推论3等边三角形的各角都相等,并且每一个角都等于60°
24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
25推论1三个角都相等的三角形是等边三角形
26推论2有一个角等于60°的等腰三角形是等边三角形
27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
28直角三角形斜边上的中线等于斜边上的一半
29定理线段垂直*分线上的点和这条线段两个端点的距离相等
30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直*分线上
一次函数
(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;
(2)正比例函数图像特征:一些过原点的直线;
(3)图像性质:
①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k<0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;
(4)求正比例函数的解析式:已知一个非原点即可;
(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)
(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;
(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)
(8)一次函数图像特征:一些直线;
(9)性质:
①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx*移|b|个单位长度而得;(当b>0,向上*移;当b<0,向下*移)
②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;
③当k<0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;
④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);
⑤当b<0时,直线y=kx+b与y轴负半轴有交点为(0,b);
(10)求一次函数的解析式:即要求k与b的值;
(11)画一次函数的图像:已知两点;
用函数观点看方程(组)与不等式
(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;
(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;
(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;
(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标;
四边形的相关概念
1、四边形
在同一*面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。
2、四边形具有不稳定性
3、四边形的内角和定理及外角和定理
四边形的内角和定理:四边形的内角和等于360°。
四边形的外角和定理:四边形的外角和等于360°。
推论:多边形的内角和定理:n边形的内角和等于(n?2)?180°;
多边形的外角和定理:任意多边形的外角和等于360°。
6、设多边形的边数为n,则多边形的对角线共有n(n?3)条。从n边形的一个顶点出2
发能引(n—3)条对角线,将n边形分成(n—2)个三角形。
*行四边形
1、*行四边形的定义
两组对边分别*行的四边形叫做*行四边形。
2、*行四边形的性质
(1)*行四边形的对边*行且相等。
(2)*行四边形相邻的角互补,对角相等
(3)*行四边形的对角线互相*分。
(4)*行四边形是中心对称图形,对称中心是对角线的交点。
常用点:(1)若一直线过*行四边形两对角线的交点,则这条直线被一组对边截下的线段
的中点是对角线的交点,并且这条直线二等分此*行四边形的面积。
(2)推论:夹在两条*行线间的*行线段相等。
3、*行四边形的判定
(1)定义:两组对边分别*行的四边形是*行四边形
(2)定理1:两组对角分别相等的四边形是*行四边形
(3)定理2:两组对边分别相等的四边形是*行四边形
(4)定理3:对角线互相*分的四边形是*行四边形
(5)定理4:一组对边*行且相等的四边形是*行四边形
4、两条*行线的距离
两条*行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条*行线的距离。*行线间的距离处处相等。
5、*行四边形的面积
S*行四边形=底边长×高=ah
初二上册数学知识点
(一)运用公式法
我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:
a2—b2=(a+b)(a—b)
a2+2ab+b2=(a+b)2
a2—2ab+b2=(a—b)2
如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。
(二)*方差公式
*方差公式
(1)式子:a2—b2=(a+b)(a—b)
(2)语言:两个数的*方差,等于这两个数的和与这两个数的差的积。这个公式就是*方差公式。
(三)因式分解
1、因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2、因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全*方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a—b)2=a2—2ab+b2反过来,就可以得到:
a2+2ab+b2=(a+b)2
a2—2ab+b2=(a—b)2
这就是说,两个数的*方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的*方。
把a2+2ab+b2和a2—2ab+b2这样的式子叫完全*方式。
上面两个公式叫完全*方公式。
(2)完全*方式的形式和特点
①项数:三项
②有两项是两个数的的*方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全*方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法
我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式、
如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式、
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义、但不难看出这两项还有公因式(m+n),因此还能继续分解,所以
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(m+n)×(a+b)、
学好数学的关键就在于要适时适量地进行总结归类,接下来小编就为大家整理了这篇人教版八年级数学全等三角形知识点讲解,希望可以对大家有所帮助。
全等三角形的性质:全等三角形对应边相等、对应角相等。
全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。
角*分线的性质:角*分线*分这个角,角*分线上的点到角两边的距离相等
角*分线推论:角的内部到角的两边的距离相等的点在叫的*分线上。
证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角*分线、中线、高、等腰三角形、等所隐含的"边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)、
人教版八年级数学全等三角形知识点讲解就为大家介绍到这里了,希望大家都能养成善于总结的好习惯。
这种利用分组来分解因式的方法叫做分组分解法、从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。
(六)提公因式法
1、在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式、当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的`公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式、
2、运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:
1)必须先将常数项分解成两个因数的积,且这两个因数的代数和等于
一次项的系数。
2)将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:
①列出常数项分解成两个因数的积各种可能情况;
②尝试其中的哪两个因数的和恰好等于一次项系数、
3)将原多项式分解成(x+q)(x+p)的形式、
(七)分式的乘除法
1、把一个分式的分子与分母的公因式约去,叫做分式的约分、
2、分式进行约分的目的是要把这个分式化为最简分式、
3、如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式、如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分、
4、分式约分中注意正确运用乘方的符号法则,如x—y=—(y—x),(x—y)2=(y—x)2,(x—y)3=—(y—x)3、
5、分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按—1的偶次方为正、奇次方为负来处理、当然,简单的分式之分子分母可直接乘方、
6、注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减。
(八)分数的加减法
1、通分与约分虽都是针对分式而言,但却是两种相反的变形、约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。
2、通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变、
3、一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备、
4、通分的依据:分式的基本性质、
5、通分的关键:确定几个分式的公分母、
通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母。
6、类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
7、同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。
8、异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减。
9、同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号。
10、对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分。
11、异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化。。
12、作为最后结果,如果是分式则应该是最简分式。
(九)含有字母系数的一元一次方程
含有字母系数的一元一次方程
引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程ax=b(a≠0)
在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。
含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。
北师版八年级上册数学知识点2
函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标*面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用*滑的曲线连接起来。
数据的收集、整理与描述
一、知识框架
二、知识概念
1、全面调查:考察全体对象的调查方式叫做全面调查、
2、抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查、
3、总体:要考察的全体对象称为总体、
4、个体:组成总体的每一个考察对象称为个体、
5、样本:被抽取的所有个体组成一个样本、
6、样本容量:样本中个体的数目称为样本容量、
7、频数:一般地,我们称落在不同小组中的数据个数为该组的频数、
8、频率:频数与数据总数的比为频率、
9、组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距、
四边形
*行四边形定义:有两组对边分别*行的四边形叫做*行四边形。
*行四边形的性质:*行四边形的对边相等;*行四边形的对角相等。*行四边形的对角线互相*分。
*行四边形的判定
1、两组对边分别相等的四边形是*行四边形
2、对角线互相*分的四边形是*行四边形;
3、两组对角分别相等的四边形是*行四边形;
4、一组对边*行且相等的四边形是*行四边形。
三角形的中位线*行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
矩形的定义:有一个角是直角的*行四边形。
矩形的性质:矩形的四个角都是直角;矩形的对角线*分且相等。AC=BD
矩形判定定理:
1、有一个角是直角的*行四边形叫做矩形。
2、对角线相等的*行四边形是矩形。
3、有三个角是直角的四边形是矩形。
菱形的定义:邻边相等的*行四边形。
菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线*分一组对角。
菱形的判定定理:
1、一组邻边相等的*行四边形是菱形。
2、对角线互相垂直的*行四边形是菱形。
3、四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线)
正方形定义:一个角是直角的菱形或邻边相等的矩形。
正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。
正方形判定定理:
1、邻边相等的矩形是正方形。
2、有一个角是直角的菱形是正方形。
梯形的定义:一组对边*行,另一组对边不*行的四边形叫做梯形。
直角梯形的定义:有一个角是直角的梯形
等腰梯形的定义:两腰相等的梯形。
等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。
等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。
解梯形问题常用的辅助线:如图
线段的重心就是线段的中点。*行四边形的重心是它的两条对角线的交点。三角形的三条中线交于疑点,这一点就是三角形的重心。宽和长的比是—1(约为0、618)的矩形叫做黄金矩形。
如何提高解答数学题的能力
数学的解答能力,主要通过实际的练习来提高。数学练习应注意以下几点:
(1)、端正态度,充分认识到数学练习的重要性。实际练习不仅可以提高解答速度,掌握解答技能技巧,而且,许多的新问题常在练习中出现。
(2)、要有自信心与意志力。数学练习常有繁杂的计算,深奥的证明,自己应有充足的信心,顽强的意志,耐心细致的习惯。
(3)、要养成先思考,后解答,再检查的良好习惯,遇到一个题,不能盲目地进行练习,无效计算,应先深入领会题意,认真思考,抓住关键,再作解答。解答后,还应进行检查。
多项式定义
在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。
对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。
北师版八年级上册数学知识点3
(3) 几何表达式举例:
(1) ∵ AB = EF
∵ ∠B=∠F
又∵ BC = FG
∴ΔABC≌ΔEFG
(2) ………………
(3)在RtΔABC和RtΔEFG中
∵ AB=EF
又∵ AC = EG
∴RtΔABC≌RtΔEFG
12.角*分线的性质定理及逆定理:
(1)在角*分线上的点到角的两边距离相等;(如图)
(2)到角的两边距离相等的点在角*分线上.(如图)
几何表达式举例:
(1)∵OC*分∠AOB
又∵CD⊥OA CE⊥OB
∴ CD = CE
(2) ∵CD⊥OA CE⊥OB
又∵CD = CE
∴OC是角*分线
13.线段垂直*分线的定义:
垂直于一条线段且*分这条线段的直线,叫做这条线段的垂直*分线.(如图)
几何表达式举例:
(1) ∵EF垂直*分AB
∴EF⊥AB OA=OB
(2) ∵EF⊥AB OA=OB
∴EF是AB的垂直*分线
14.线段垂直*分线的性质定理及逆定理:
(1)线段垂直*分线上的点和这条线段的两个端点的距离相等;(如图)
(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直*分线上.(如图)
几何表达式举例:
(1) ∵MN是线段AB的垂直*分线
∴ PA = PB
(2) ∵PA = PB
∴点P在线段AB的垂直*分线上
15.等腰三角形的性质定理及推论:
(1)等腰三角形的两个底角相等;(即等边对等角)(如图)
(2)等腰三角形的“顶角*分线、底边中线、底边上的高”三线合一;(如图)
(3)等边三角形的各角都相等,并且都是60°.(如图)
(1) (2) (3) 几何表达式举例:
(1) ∵AB = AC
∴∠B=∠C
(2) ∵AB = AC
又∵∠BAD=∠CAD
∴BD = CD
AD⊥BC
………………
(3) ∵ΔABC是等边三角形
∴∠A=∠B=∠C =60°
16.等腰三角形的判定定理及推论:
(1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)
(2)三个角都相等的三角形是等边三角形;(如图)
(3)有一个角等于60°的等腰三角形是等边三角形;(如图)
(4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边是斜边的一半.(如图)
(1) (2)(3) (4) 几何表达式举例:
(1) ∵∠B=∠C
∴ AB = AC
(2) ∵∠A=∠B=∠C
∴ΔABC是等边三角形
(3) ∵∠A=60°
又∵AB = AC
∴ΔABC是等边三角形
(4) ∵∠C=90°∠B=30°
∴AC = AB
17.关于轴对称的定理
(1)关于某条直线对称的两个图形是全等形;(如图)
(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直*分线.(如图)
几何表达式举例:
(1) ∵ΔABC、ΔEGF关于MN轴对称
∴ΔABC≌ΔEGF
(2) ∵ΔABC、ΔEGF关于MN轴对称
∴OA=OE MN⊥AE
18.勾股定理及逆定理:
(1)直角三角形的两直角边a、b的*方和等于斜边c的*方,即a2+b2=c2;(如图)
(2)如果三角形的三边长有下面关系: a2+b2=c2,那么这个三角形是直角三角形.(如图)
几何表达式举例:
(1) ∵ΔABC是直角三角形
∴a2+b2=c2
(2) ∵a2+b2=c2
∴ΔABC是直角三角形
19.RtΔ斜边中线定理及逆定理:
(1)直角三角形中,斜边上的中线是斜边的一半;(如图)
(2)如果三角形一边上的中线是这边的一半,那么这个三角形是直角三角形.(如图)
几何表达式举例:
(1) ∵ΔABC是直角三角形
∵D是AB的中点
∴CD = AB
(2) ∵CD=AD=BD
∴ΔABC是直角三角形
几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)
一 基本概念:
三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角*分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直*分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.
二 常识:
1.三角形中,第三边长的判断: 另两边之差<第三边<另两边之和.
2.三角形中,有三条角*分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角*分线、中线、高线都是线段.
3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD?AB=BE?CA.
4.三角形能否成立的条件是:最长边<另两边之和.
5.直角三角形能否成立的条件是:最长边的*方等于另两边的*方和.
6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.
7.如图,双垂图形中,有两个重要的性质,即:
(1) AC?CB=CD?AB ; (2)∠1=∠B ,∠2=∠A .
8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.
9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.
10.等边三角形是特殊的等腰三角形.
11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明.
12.符合“AAA”“SSA”条件的三角形不能判定全等.
13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.
14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的*分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的*行线.
15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.
16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.
17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图.
※18.几何重要图形和辅助线:
(1)选取和作辅助线的原则:
① 构造特殊图形,使可用的定理增加;
② 一举多得;
③ 聚合题目中的分散条件,转移线段,转移角;
④ 作辅助线必须符合几何基本作图.
(2)已知角*分线.(若BD是角*分线)
① 在BA上截取BE=BC构造全等,转移线段和角;
② 过D点作DE‖BC交AB于E,构造等腰三角形 .
(3)已知三角形中线(若AD是BC的中线)
① 过D点作DE‖AC交AB于E,构造中位线 ;
② 延长AD到E,使DE=AD
连结CE构造全等,转移线段和角;
③ ∵AD是中线
∴SΔABD= SΔADC
(等底等高的三角形等面积)
(4) 已知等腰三角形ABC中,AB=AC
① 作等腰三角形ABC底边的中线AD
(顶角的*分线或底边的高)构造全
等三角形;
② 作等腰三角形ABC一边的*行线DE,构造
新的等腰三角形.
(5)其它
① 作等边三角形ABC
一边 的*行线DE,构造新的等边三角形;
② 作CE‖AB,转移角;
③ 延长BD与AC交于E,不规则图形转化为规则图形;
④ 多边形转化为三角形;
⑤ 延长BC到D,使CD=BC,连结AD,直角三角形转化为等腰三角形;
⑥ 若a‖b,AC,BC是角*
分线,则∠C=90°.
学好数学的方法有哪些
1学好初中数学课前预习是重点
数学解题思路和能力的培养主要在于课堂上,所以想要学好初中数学一定要重视数学的学习效率和提前预习。只有提前预习才知道自己哪里不会,这样在课堂上才会注意力集中不走神。同时在初中数学的课上,学生也要紧跟老师的解题思路,注意自己的解题思路和老师的有什么不同。尤其是基础知识和最基本的技能学习,课上数学老师讲完后,初中生要在课后及时复习,争取老师讲完每一节的知识后,学生都不要留下疑问。
2独立完成初中数学作业
在完成老师布置的作业时,初中生要学会自己能够独立完成,想要学好初中数学就要勤于思考,千万不能偷懒。*时对于自己弄不懂的题目和解题思路,不要放弃,静下心来认真分析和研究,尽量做到自己能够解决,实在是想不出来在问同学或者老师。对于初中数学的每一个学习阶段,都要学会进行整理和归纳。
建立数学思维方式
到了八年级,数学出现了很多新的知识点,也是重点考点和关键难点,比如系统性的开始学习几何知识,首次引入函数的概念并求解一般的线性函数问题,这些对于初中生来说既是全新的,又是有一定难度的。这就需要学生创新数学思维方式,紧跟教材进度和课堂进度,训练自己的数学思维尤其的几何图形的感觉,以及对函数的深刻理解。
推荐访问:要点 数学知识 八年级上册 八年级上册数学知识要点3篇 八年级上册数学知识要点1 八年级上册数学知识要点1-3